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Abstract

A century after the discovery of quantum mechanics, the meaning of quan-

tum mechanics still remains elusive. This is largely due to the puzzling nature

of the wave function, the central object in quantum mechanics. If we are real-

ists about quantum mechanics, how should we understand the wave function?

What does it represent? What is its physical meaning? Answering these ques-

tions would improve our understanding of what it means to be a realist about

quantum mechanics. In this survey article, I review and compare several realist

interpretations of the wave function. They fall into three categories: ontological

interpretations, nomological interpretations, and the sui generis interpretation.

For simplicity, I will focus on non-relativistic quantum mechanics.

Keywords: quantum mechanics, wave function, quantum state of the universe, sci-

entific realism, measurement problem, configuration space realism, Hilbert space realism,

multi-field, spacetime state realism, laws of nature
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1 Introduction

Quantum mechanics is one of the most successful physical theories to date. Not

only has it been confirmed through a wide range of observations and experiments,

but it also has led to technological advances of a breathtaking scale. From electronics

and optics to computing, the applications of quantum mechanics are ubiquitous in

our lives.

As much as it has given rise to technological innovations, the meaning of quan-

tum mechanics remains elusive. Many curious features of quantum mechanics, such

as entanglement, non-locality, and randomness, are taken to be prima facie challenges

for a clear understanding of quantum mechanics. These puzzles are related to the

wave function, the central object in quantum mechanics. Understanding the meaning

of quantum mechanics seems to require a good understanding of the meaning of

the wave function.

What does the wave function represent? That is the main concern of this sur-

vey article. The answer to that question is complicated by the fact that the wave

function does not look like anything familiar. It is a function defined on a vastly

high-dimensional space, with values in complex numbers, and unique only up to

an “overall phase.” Nevertheless, we have devised many ways of using wave func-

tions in making predictions and explaining phenomena. We use wave functions

to calculate the probabilities of microscopic and macroscopic behaviors of physical

systems. These led to the successful explanations of the double-slit experiment,

the Stern-Gerlach experiment, and the stability of the hydrogen atom. The wave

function is indispensable for making these predictions. However, the predictions

are probabilistic. (More on this later.)

Roughly speaking, there are three main views about the wave function:

Instrumentalism: The wave function is merely an instrument for making empiri-

cally adequate predictions.

Epistemicism: The wave function merely represents the observer’s uncertainty of

the physical situation.1

Realism: The wave function represents something objective and mind-independent.

1The recently published theorem of Pusey et al. (2012) shows that a certain class of epistemic
interpretations of the wave function are incompatible with the empirical facts.
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In this article, I focus on the realist interpretations of the wave function. They

seem to be the most interesting and promising ways of understanding quantum

mechanics.

Let me make four remarks. First, the meaning of the wave function is related to

solutions to the quantum measurement problem. Hence, we will start in §2 with an

introduction to this topic, along with some mathematical preliminaries. Second, I

left the definition of realism open-ended. This is because we will consider proposals

for specific versions of realism about the wave function. The proposals are grouped

into three categories: ontological interpretations (§3), nomological interpretations

(§4), and the sui generis interpretation (§5). Third, because of the prevalence of

quantum entanglement, “the wave function” should be understood to refer to the

wave function of the universe, or the universal wave function. The wave functions

of the subsystems are thought to be derivative of the universal one. Fourth, for

simplicity, I will focus on non-relativistic versions of quantum mechanics.2

The issues taken up here are continuous with the general question about how

to interpret physical theories. They offer concrete case studies for scientific realism,

and they might be useful for philosophers of science, metaphysicians, and anyone

with an interest in understanding quantum mechanics.

2 Background

In this section, we will review some basic facts about the wave function and its

connection to the probabilistic predictions. We will then consider the quantum

measurement problem and three realist theories that solve it. The upshot is that the

wave function occupies a central place in their descriptions of physical reality.

2.1 The Wave Function

It will be useful to have a brief review of classical mechanics. To describe a classical

mechanical system of N particles, we can specify the position q and momentum p

of each particle in physical space (represented by R3). We can represent the classical

state of an N-particle system in terms of 6N numbers, 3N for positions and 3N for

momenta. The classical state can also be represented as a point in an abstract state

space called the phase space R6N. Once we specify the forces (or interactions) among

the particles, they evolve deterministically, by the Hamiltonian equations of motion:

∂qi

∂t
= ∂H

∂pi

,
∂pi

∂t
= −∂H

∂qi

, (1)

where H stands for the Hamiltonian function on the phase space, which is a short-

hand notation that encodes classical interactions such as Newtonian gravitational

potential and Coulomb electric potential. The Hamiltonian equations are differen-

tial equations, and the changes in the particles are obtained from taking suitable

2For complications that arise in the relativistic theories, see Myrvold (2015).
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derivatives of H. In this sense, H is the generator of motion. For every point in the

phase space, H generates a curve starting from that point. In other words, for every

initial condition of the N particle system, H determines the future trajectories of the

particles.

Now let us introduce the quantum mechanical way of describing a system of

N “particles.”3 Instead of describing it in terms of the positions and momenta of

N particles, we use a wave function for the system. The wave function represents

the quantum state of the system. In the position representation, the wave function,

denoted by ψ(q), is a particular kind of function from configuration space R3N to

complex numbers C. Let us elaborate on this definition:

• Domain: the domain of the wave function ψ is R3N, or N copies of physical

space R3. N is the total number of particles in the system. When N is large,

R3N is vastly high-dimensional. Each point in R3N is an N-tuple (q1, ...,qN).
Each qi corresponds to particle i’s position in physical space R3. Hence, the

N-tuple lists the positions of N particles. We use a point in R3N to represent

a particular configuration (arrangement) of N particles in R3. Hence, R3N is

called the configuration space.4 The wave function ψ(q1, ...,qN) is a function

whose domain is the configuration space, which is vastly high-dimensional

when the system has many particles.

• Range: the range of the wave function ψ, in the simplest case, is the field of

complex numbers C. A complex number has the form a + bi, where i = √−1;

in polar form, it is Reiθ, where R is the amplitude and θ is the phase.5

• Restrictions: the wave function is a particular kind of function from R3N to C.

It has to be a “nice” function that we can take certain operations of integration

and differentiation.6

• Abstract state space: each wave function describes a quantum state of the

system. The space of all possible quantum states is called the state space of

quantum mechanics. The state space will include all possible wave functions

for the system, that is, all the “nice” functions from configuration space R3N to

complex numbers C. The Hilbert space is the abstract mathematical space that

we use to describe such a state space. The Hilbert space is a high-dimensional

vector space, in which each wave function is represented as a vector.

3In some ways of thinking about quantum mechanics, particles are not fundamental. Hence the
quotation marks.

4This is the ordered configuration space, in which a permutation of the particle labels creates
a different configuration. If the particles are indistinguishable, then it is more natural to use the
unordered configuration space, N

R
3. This has implications for the nature of the wave function. See

Chen (2017) and the references therein.
5If we include spinorial degrees of freedom, the range is Ck. We set spins aside in this paper.
6It has to be “square-integrable.” That is, if we take the square of the amplitude of the wave

function value at every point, and integrate over the entire configuration space, we will get a finite
value. This is to ensure that we can normalize the squared value of the wave function to 1 so that it
has meaningful connections to probabilities. To ensure that we can take suitable derivatives on the
wave function, we often also require the wave functions to be sufficiently smooth.
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In classical mechanics, the state of a system is represented by the positions and

momenta of all the N particles (a point in phase space) that changes deterministically

according to (1). If the wave function represents the quantum state of a system at

a time, how does it change over time? It obeys another differential equation called

the Schrödinger equation:

ih̵
∂ψ

∂t
= Ĥψ, (2)

where i is the complex number
√−1, h̵ is the Planck constant divided by 2π, and Ĥ is

the Hamiltonian operator that encodes the energy and fundamental interactions in

nature. It is also deterministic: given any vector in the Hilbert space, the Schrödinger

equation (2) produces a determinate curve in the Hilbert space. Another feature

of (2) is that it is linear: if ψ1 and ψ2 are solutions to the equation, then their

linear combinations are also solutions to the equation. A surprising consequence

of linearity is that, in the Schrödinger’s cat thought experiment, the cat can be in a

superposition of the alive state and the dead state.

ψcat = 1√
2
ψalive + 1√

2
ψdead (3)

A cat in this quantum state is not alive, and it is not dead. The linear Schrödinger

equation (2) ensures that the wave function of the system will not change into

ψalive (the cat is alive) or ψdead (the cat is dead). Thus, the Schrödinger equation

does not determine a unique experimental outcome. To resolve this, textbook

quantum mechanics supplements the Schrödinger equation with additional collapse

postulates. Whenever we open the box and “observe” the cat, the system will

suddenly change (collapse) into one of the two states: ψalive or ψdead. An important

role of the wave function is determining the probabilities of experimental outcomes,

which are taken to be the results of wave function collapses. For example, the

probability of finding the system in any set of configurations is given by the Born

rule:

P(q ∈ A) = ∫
A
∣ψ(q)∣2dq, (4)

where A is a set of points in configuration space, ∣ψ(q)∣2 is the squared amplitude

of the wave function, and dq is the Lebesgue measure on R3N. In the cat example,

the probability of finding the cat to be alive is equal to 1
2 , since ∫ ∣ 1√

2
ψalive∣2 + 0 = 1

2 .

The Born rule has the consequence that wave functions that differ only by an overall

phase (multiplied by a complex number eiθ, where θ ∈ [0,2π]) will give rise to the

same observable phenomena (∣ψ∣2 = ∣eiθψ∣2). That is called the overall phase symmetry,

which motivates the common view that two wave functions that differ by an overall

phase represent the same quantum state.

2.2 Quantum Measurement Problem

Notwithstanding the empirical success of quantum mechanics, the collapse postu-

lates seem out of place for a fundamental theory of the world. If the wave function (of
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the system and the measurement device) obeys the Schrödinger equation, how can

it also obey the collapse postulates that contradict the linearity of the Schrödinger

equation? But if the wave function does not collapse, how can we obtain unique

experimental outcomes? In short, we have the quantum measurement problem:

(P1) The wave function is the complete description of the physical system.

(P2) The wave function always obeys the Schrödinger equation.

(P3) Every experiment has a unique outcome.

Each of these three propositions is, on its own, plausible. However, together they

lead to a contradiction. To see the contradiction, let us apply them to Schrödinger’s

cat thought experiment. If P1 is true, the system is completely described by (3). If

P2 is true, the wave function never collapses into one of the definite states. If P3 is

true, the cat is nonetheless in one of the definite states—either alive or dead.7

Since P1—P3 are inconsistent, at least one of them is false. Rejecting P1 or

P2 would require us to develop alternative theories of quantum mechanics, since

we would need to find additional variables omitted by the wave function, or we

would need to modify the Schrödinger equation. Rejecting P3 would lead to major

revisions of our assumptions about the world. There are three main “interpretations

” of quantum mechanics that carry out such strategies. They all contain significant

revisions of quantum mechanics, so we should call them realist theories of quantum

mechanics instead of interpretations.

First, the de Broglie-Bohm theory, or Bohmian mechanics (BM), rejects P1. Ac-

cording to BM, the wave function is not the complete description of the physical

system. There are actual particles with precise positions in physical space. The

wave function still obeys the Schrödinger equation. But the wave function also

determines the velocity of the particles according to the guidance equation.8 In the

cat example, the cat is made out of particles in physical space. There is always a

determinate configuration of particles, so the cat is either alive or dead. The prob-

abilities of quantum mechanics become epistemic uncertainties over initial particle

configurations.9

Second, the Ghirardi-Rimini-Weber theories of spontaneous collapse (GRW) re-

ject P2. According to GRW theories, the wave function ψt does not always obey

7For a more thorough discussion about the quantum measurement problem, see Myrvold (2017)
and Bell (1990).

8 The particles move according to the guidance equation:

dQi

dt
= h̵

mi
Im
∇iψ

ψ
, (5)

where Qi and mi are the position and mass of particle i, Im means taking the imaginary part, and
∇i means taking the gradient with respect to the i-th particle. The particles are initially distributed
according to the Born rule, and their distribution will always agree with the Born rule because of the
mathematical properties of the Schrödinger equation and the guidance equation.

9 For a survey of BM, see Goldstein (2017); for the original paper, see Bohm (1952); for a modern
version, see Dürr et al. (1992).
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the Schrödinger equation. It undergoes spontaneous collapses with a fixed rate per

particle per unit time. In the cat experiment, given the vast number of particles

in the system, it will quickly collapse into a determinate state in which the cat is

either alive or dead. Collapses are represented by Gaussian functions with a fixed

width in physical space. Due to entanglement, collapses on a single particle has

the effect that the universal wave function will collapse into a definite state. On the

macroscopic scale, the collapse will give rise to (approximately) Born rule probabil-

ities. Each version of GRW postulates specific values for the collapse rate and the

Gaussian width. Moreover, there can be additional variables representing ontology

in physical space. GRWm adds a mass-density ontology that specifies the amount of

mass in physical space by a real-valued function m(x, t), where (x, t) is a space-time

point.10 In contrast, GRWf adds a flash ontology that postulates the existence of

space-time events at the center of the Gaussian function. It can be represented as a

function F(x, t)with x ∈ R3 and F(x, t) = 1 if (x, t) is the center of some GRW collapse

and 0 otherwise.11

Third, many-worlds interpretations of Everettian quantum mechanics (EQM)

reject P3.12 According to these interpretations, there is no need to ensure that there

is a unique outcome in the cat experiment. There simply are two branches of the

wave function, one in which the cat is alive and the other in which the cat is dead.

Both branches co-exist. Because of a property called decoherence, the branches do

not interfere much with each other. The branches of the wave function are emergent

worlds, the wave function is the complete description of the “multi-verse,” and

it always obeys the Schrödinger equation. Similarly to GRWm, we can devise a

version of EQM with a mass-density ontology. This is called Sm and was first

proposed by Allori et al. (2010). A challenge for any version of EQM is how to make

sense of probability in a world in which every possible outcome of every quantum

experiment happens with certainty.13

The upshot is that the wave function figures prominently in all three realist quan-

tum theories. In BM, although the wave function is not the complete description of

the system, it is still part of the description. Moreover, the wave function guides

particle motion. In GRW, the wave function collapses and gives rise to unique out-

comes of experiments. In (many-worlds interpretations of) EQM, the wave function

10The mass-density function is defined from the wave function:

m(x, t) =
N

∑
i=1

mi∫
R3N

d3x1...d
3xNδ

3(xi − x)∣Ψt(x1, ...,xN)∣2 (6)

11For a survey of GRW, see Ghirardi (2018); for the original paper, see Ghirardi et al. (1986); Bell
(2004), Ch 22, contains a clear presentation of the theory.

12The many-worlds interpretations are popular among Everettians. However, Conroy (2012)
has provided textual evidence that Everett himself might endorse a single-world interpretation of
quantum mechanics.

13For a survey of EQM, see Vaidman (2018); for the original paper, see Everett III (1957); for an up-
dated book-length development of the theory, see Wallace (2012). There has been significant progress
in addressing the probability challenge with the tools of typicality, decision theory, and self-locating
probabilities. For some recent examples, see Barrett (2017), Wallace (2012), Sebens and Carroll (2016),
and the references therein.
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never collapses but gives rise to emergent parallel worlds. For quantum theories

with additional ontology, such as BM, GRWm, GRWf, and Sm, the wave function

is also tied to the dynamics of the additional ontology. But their relationship is

different in these theories. Bohmian particles have independent dynamics: even

if the wave function were not to change, Bohmian particles would still move in a

non-trivial fashion. That is not the case in GRWm, GRWf, and Sm. Had there been

no change to the wave function, the additional ontology would not change either. It

is in this sense that the dynamics of mass-densities and flashes are not independent

of the dynamics of the wave function.

3 Ontological Interpretations

In this section, I review four ontological interpretations of the wave function. How-

ever, the label “ontological” could be misleading. These four interpretations share

the feature that the wave function is interpreted as part of the fundamental material

ontology, on a par with particles, fields, space-time events or properties, which are

the kind of microscopic things that make up macroscopic objects such as tables and

chairs. In §4 and §5, we will review nomological interpretations and the sui generis

interpretation of the wave function, which are compatible with the position that the

wave function is part of the ontology but just not in the same ontological category

as particles or fields.

3.1 A Field on a High-Dimensional Space

According to the first ontological interpretation, the fundamental space is a high-

dimensional space, and the wave function is a field in that space. This was intro-

duced by Albert (1996). Albert calls this view wave function realism.14 However,

as we shall see in the later sections, that label is no longer appropriate given the

abundance of other approaches that are also realist about the wave function.

It is counterintuitive how the fundamental space can be high-dimensional. It

might help to compare this idea with something familiar—classical physics. In

classical field theories such as Maxwellian electrodynamics, electromagnetic fields

are fields on the four-dimensional physical space-time. A field on physical space-

time can be interpreted as an assignment of monadic properties (field strength

and direction) to each point in space-time. Such an assignment is determined by

Maxwell’s equations and certain boundary conditions.

In a similar way, the wave function can be interpreted as a physical field. How-

ever, the wave function cannot be interpreted as a field on physical space, as its

domain is the high-dimensional configuration space, represented by R3N. If we take

configuration space to be the fundamental space, then the wave function can be in-

terpreted as a field that assigns properties to each point in configuration space. The

14It has been developed and defended by Loewer (1996), Ney (2012, 2013), and North (2013),
although Ney and North are primarily concerned with the first part of the thesis, i.e. the fundamental
space is a high-dimensional space.
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properties assigned by the field, represented as complex numbers, change accord-

ing to the Schrödinger equation. On this view, the high-dimensional configuration

space is ontologically prior to physical space(time), and the latter somehow comes

out of the fundamental structure. This is despite the fact that we call the high-

dimensional space “configuration space,” which seems to imply the reverse order

of ontological dependence.15

The high-dimensional field interpretation prioritizes the structure of the wave

function and its dynamics. The fundamental physical events are those that happen

on the high-dimensional space. A key challenge to this view is to explain our

apparent experiences in a three-dimensional space. This is not just a question about

recovering the manifest image, but it is also about whether such an interpretation of

quantum mechanics can be “empirically coherent,” in the sense that if our evidence

for quantum mechanics comes from instrument readings in the three-dimensional

space, the theory should not undermine such evidence. It should explain how

the appearances of three-dimensional objects come out of the high-dimensional

fundamental space.16

Albert (1996) suggests that the explanation lies in the dynamics—in the structure

of the Hamiltonian operator. Although all the 3N dimensions are metaphysically

on a par:

{q1, q2, q3, q4, q5, q6, ..., q3N−2, q3N−1, q3N} (7)

the Hamiltonian operator has a term that encodes fundamental interactions and it

takes on a particular form:

∑∑
0≤i< j≤N

Vi j[(q3i−2 − q3 j−2)
2 + (q3i−1 − q3 j−1)

2 + (q3i − q3 j)
2] (8)

The Hamiltonian operator groups the coordinates in the 3N-dimensional configura-

tion space into triplets, such that there might be emergent objects that have the same

15There are three versions of this view:

• Bohmian version: the fundamental space is represented by R
3N. The fundamental ontology

consists in a point particle located in that space and a field that assigns properties to points of
that space. The field always evolves by the Schrödinger equation. The point particle moves
along in the field according to the guidance equation, much like corks move along in flowing
river. Here we see a dis-analogy with the classical field. In classical physics, the field and
the particles satisfy the action-reaction principle; the fields and the particles can influence
each other. In Bohmian mechanics, the wave function interpreted as a field can influence the
particle but not vice versa.

• GRW version: the fundamental space is represented by R
3N. The fundamental ontology

consists in a field that assigns properties to points of that space. The field evolves by the
Schrödinger equation most of the time but sometimes collapses by the GRW collapse mecha-
nism.

• Everettian version: the fundamental space is represented by R
3N. The fundamental ontology

consists in a field that assigns properties to points of that space. The field always evolves by
the Schrödinger equation.

The high-dimensional field interpretation of the wave function is incompatible with GRWm, GRWf,
or Sm.

16See Barrett (1999) and Barrett (1996).
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functional profile as what we take to be ordinary objects in the 3-dimensional space.

This provides reasons to believe that there might be an emergent 3-dimensional

physical space. However, Albert’s proposed explanation has been challenged by

Monton (2002), Lewis (2004), and Chen (2017). See Emery (2017) for an objection

based on conservativeness principles.

Maudlin (2013) has criticized Albert’s proposal on the ground that it reifies too

much structure. The common view (§2.1) holds that two wave functions that differ

only by a complex multiplication constant represent the same physical state. But if

we interpret the wave function as a field that assigns monadic properties to points

in configuration space, then we would distinguish two wave functions related by

a constant, for the numbers assigned to the points are different. This problem can

be avoided if we adopt an intrinsic (or gauge-free) characterization of the wave

function, in terms of comparative relations that are invariant under the change by a

constant (Chen (2018a)).

3.2 A Multi-field on Physical Space

The high-dimensional field interpretation of the wave function faces difficulties,

primarily because it privileges configuration space over physical space. There are

many good reasons to take physical space to be ontologically more basic. First, it

underlies many important symmetries in physics. Second, it is much easier for a the-

ory to be empirically coherent if it does not undermine the relative fundamentality

of physical space(time).

These difficulties are avoided in the second ontological interpretation, according

to which the fundamental space is the ordinary physical space(time). On this view,

the wave function is not a field in the traditional sense, but a multi-field on physical

space. (See Forrest (1988), Belot (2012), Chen (2018a, 2017), Hubert and Romano

(2018).) A multi-field is similar to a field. However, unlike fields, multi-fields assign

properties not to individual points but to regions of points in space. Such regions

can be connected or disconnected. The wave function is a function from N copies

of R3 to complex numbers. Instead of thinking of it as a field that assigns properties

to every point in R3N, we can think of it as a “multi-field” that assigns properties to

every region of R3 that is composed of N points. The multi-field interpretation is

a more faithful representation for “indistinguishable particles,” for which particle

labels do not matter. This is because spatial regions understood as N-element

subsets of R3 (or mereological fusions of N points in R3) are unordered. Thus, the

multi-field interpretation has the additional advantage of automatically enforcing

what is called “permutation invariance”: mere permutations of a configuration of N

particles do not change the physical state.17 Similar to the previous interpretation,

here we can avoid postulating too much structure by using an intrinsic account of

the multi-fields.

17Chen (2017) suggests that the symmetrization postulate is better explained by the low-
dimensional interpretation than the high-dimensional interpretation.
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3.3 Properties of Physical Systems

The third ontological interpretation, proposed by Wallace and Timpson (2010), af-

firms the (relative) fundamentality of the physical space(time). On this view, the

universe is divided into subsystems that occupy some spatial-temporal regions.

Larger systems can be made out of unions of smaller systems. And the universe

is the union of all systems. Although not every system has a wave function (be-

cause of entanglement), we can still associate to each system a determinate property

represented by what is called a density matrix. A density matrix will encode all

the dynamical variables of the system. Here we should not think of the density

matrix as a field or multi-field. Rather, it is thought to be an abstract operator in the

Hilbert space.18 This view was introduced as an alternative to the high-dimensional

field interpretation. It is also an alternative to the low-dimensional multi-field in-

terpretation. However, it is still a version of realism about the wave function, since

the universal wave function (or the universal density matrix) is to be found in the

ontology—the property of the entire universe.

Wallace and Timpson call this approach spacetime state realism. They argue that

this approach avoids privileging the position representation of the wave function,

and that it has significant advantages in reconciling with relativistic invariance. See

Swanson (2018) for some discussions about the relativistic extensions.

A question about spacetime state realism is whether the fundamental ontology

contains redundant information. If we help ourselves to a decomposition of the

universe into subsystems, and if we have the quantum state of the universe, then we

can obtain density matrices of the subsystems by a purely mathematical procedure

of tracing out the environmental degrees of freedom. Since they can be derived

from the quantum state of the universe, the properties of the subsystem need not be

placed in the fundamental ontology. If we get rid of the subsystem properties and

only keep the universal property (the universal density matrix), then this approach

would be in the same spirit as the low-dimensional multi-field approach in §3.2.19

18For example, if the universe consists in two systems A and B, and if their joint quantum state is
this:

∣ΨAB⟩ = 1√
2
(∣α⟩A ∣β⟩B − ∣β⟩A ∣α⟩B) (9)

then the density matrix associated with system A (called the reduced density matrix) will be:

ρA = 1

2
(∣α⟩A ⟨α∣A + ∣β⟩A ⟨β∣A) (10)

On this view, neither ∣ΨAB⟩ nor ρA are understood as functions or fields on some spaces. Rather, they
are understood as structures in the abstract Hilbert spaces: ∣ΨAB⟩ is a vector in the total Hilbert space
HA ⊗HB, and ρA is an operator that maps vectors to vectors in the system A’s Hilbert space HA .

19See Monton (2006) and Monton (2013) for another view that interprets the wave function as
properties of physical systems.
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3.4 A Vector in the Hilbert Space

The final ontological interpretation of the wave function takes the abstract Hilbert

space more seriously. Recall that the wave function is represented as a vector in

Hilbert space, and the Schrödinger equation can be represented as an equation

for vector rotation in that space. Carroll and Singh (2018) suggest that the Hilbert

space is the fundamental space, and the wave function is just a vector in that space.

Every goings-on in the world corresponds to some particular direction the vector is

pointing.

Since the Everettian interpretation of QM is the most natural place for this view,

Carroll and Singh (2018) call this approach Mad-Dog Everettianism. In their words,

the label is “to emphasize that it is as far as we can imagine taking the program of

stripping down quantum mechanics to its most pure, minimal elements.”

It is already difficult to recover ordinary objects from configuration space. It is

even more difficult to recover them from the Hilbert space. For one thing, there is

no space-time structure in the Hilbert space. The state of the world corresponds

to a vector, which is just like every other vector. How can anything familiar, such

as space, time, and ordinary objects, come out of a vector in a high-dimensional

Hilbert space? Like Albert (1996), Carroll and Singh propose that the answer lies in

the structure of the Hamiltonian operator. The Hamiltonian provides a privileged

way to decompose the total Hilbert space into smaller spaces, which may explain the

emergent structure.20 This proposal is more speculative than the high-dimensional

field interpretation. However, it is in part motivated by the non-fundamentality of

space-time in several theories of quantum gravity. As such, it could be a fruitful

project to explore.

4 Nomological Interpretations

According to the previous ontological interpretations, the wave function is part

of the fundamental material ontology of the world, such as particles and fields

in classical mechanics. In contrast, nomological interpretations hold that the wave

function is nomological, i.e. on a par with laws of nature. In this section, I survey two

kinds of nomological interpretations of the wave function: the strong nomological

interpretations and the weak nomological interpretations.

These interpretations are most compelling from a Bohmian point of view. How-

ever, they might be adaptable for some versions of GRW theories and Everettian

theories with additional ontologies.

20Their analysis is restricted to locally finite-dimensional Hilbert spaces. See Cotler et al. (2017) and
Bao et al. (2017) for more details.
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4.1 Strong Nomological Interpretations

The guiding idea of nomological interpretations is that the wave function is on a par

with laws of nature (Goldstein and Zanghì (2013)). To appreciate the strong nomo-

logical interpretations, it would be helpful to review the status of the Hamiltonian

function in classical mechanics. As mentioned in §2.1, the Hamiltonian equations

(1) govern the motion of classical particles in physical space, represented by a curve

in phase space. The Hamiltonian function is the generator of such motion. It is a

convenient short hand for the kinetic energy term and the pair-wise interactions of

the particles. We can, if we like, write out H explicitly as a function (of position

and momentum) on the right hand sides of the equations. For the Hamiltonian

equations to be simple laws of nature, H has to be a simple function. In this sense,

we give H a nomological interpretation. Although it is a function on phase space,

we do not treat it as part of the material ontology.21

Let us now consider Bohmian mechanics. In this theory, the guidance equation

governs the motion of the Bohmian particles in physical space, represented by a

curve in configuration space. The wave function is the generator of such motion.

If the wave function turns out to be a simple function, then we can write out ψ
explicitly as a function (of configuration variables) on the right hand side of the

equation. In that case, we can give it an analogous nomological interpretation.

Although it is a function on configuration space, we do not need to treat it as part

of the ontology but only part of the law system. I call this a strong nomological

interpretation, for it affords the same status to the wave function as it does to the

classical Hamiltonian function.

The strong nomological interpretation requires the universal wave function to

be simple. Although generic wave functions of quantum systems are very complex,

there are reasons to be optimistic. Goldstein and Zanghì (2013) have offered one.

The universal wave function can be quite distinct from the wave functions of the

subsystems. If we were to extend quantum mechanics to quantum gravity, then it

is possible that the wave function of the universe will be stationary. This is seen in

the Wheeler-DeWitt equation of canonical quantum gravity:

ĤΨ = 0 (11)

If we understand (11) as telling us about the time evolution of the wave function,

then it tells us that the wave function does not change over time, i.e. it is stationary.

Since the Schrödinger equation governs how the wave function changes over time,

it is to be treated not as a fundamental equation but only as an effective equation—

describing the behavior of subsystems.

It is plausible to think that a stationary wave function contain many symmetries,

because usually only symmetrical wave functions are stationary. Such symmetries

might ensure that the wave function is simple. For example, a translationally

invariant function on physical space can only be a constant function, which is

21To borrow a term from Barry Loewer and Tim Maudlin (p.c.), on this view, the wave function is
part of the nomology of the theory.

13



relatively simple. Therefore, if the wave function of the universe satisfies (11), and if

we understand it as telling us about time evolution, it is plausible that the universal

wave function is simple. On the Bohmian theory, then, the universal wave function

can be treated on a par with laws of nature.22

This nomological interpretation faces some challenges. First, it is controversial

whether the Wheeler-DeWitt equation governs the universal wave function. For

example, there are research programs in quantum gravity that do not depend on

it. Second, since the wave function is stationary, it requires some revisions about

how we think about the arrow of time.23 Chen (2018b) develops a new framework

of quantum mechanics that avoids these problems. However, in that approach, the

fundamental quantum state has to be represented by a density matrix instead of a

wave function.

These interpretations of the wave function are most compelling in the Bohmian

framework. However, In Everettian and GRW theories with additional ontologies,

we might also give a nomological interpretation of the wave function.

4.2 Weak Nomological Interpretations

The literature on the nomological interpretation of the wave function is growing.

However, much of that is directed at a weaker thesis, which I will call the weak

nomological interpretation. On this view, the wave function does not need to be

like the classical Hamiltonian to fit into the law system. It recommends a weaker

criterion for being nomological. This idea is most plausible in some extended

Humean framework. In the original Humean framework, laws of nature are the

axioms of the best system that summarizes the mosaic. In Loewer (2001), the

Humean framework has been extended to allow for deterministic “chances.” In

Hall (2015), it has been further extended to allow intrinsic properties such as mass

and charge to be non-fundamental and to be merely part of the best system.

According to the weak nomological interpretation (Humean version), what is

fundamental is just the distribution of matter in the four-dimensional spacetime, and

the wave function is just a dynamical variable that assists in a simple and informative

summary of the mosaic. (See Miller (2014), Esfeld (2014), Bhogal and Perry (2015),

Callender (2015), and Esfeld and Deckert (2017).) Although the wave function is

part of the best system, it does not have to be simple simpliciter. It just needs to be the

simplest one among all competitors. Even though the exact specification of the wave

function is complicated, the best system involving the wave function might still be

the simplest overall. Albert (p.c.), Maudlin (p.c.), and Dewar (2017) have raised

the worry that the complete specification of particle trajectories, which will form

22Relatedly, Allori (2017) has proposed a new argument for nomological interpretations based on
symmetry principles.

23The problem is that in standard Boltzmannian quantum statistical mechanics, the arrow of time
is associated with the increase of entropy of the quantum system, which is a property of the wave
function. If the universal wave function is stationary, then there is no increase of Boltzmann entropy.
Perhaps the Bohmian approach can help by providing an alternative definition of entropy in terms
of particle configurations. But that has not been done.
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another system, seems to postulate less information than the wave function. This is

because the particle trajectories form a single curve in configuration space, while the

wave function assigns values to every point in configuration space. Moreover, they

have raised the worry that the wave function does not supervene on the particle

trajectories, since prima facie the particle trajectories do not determine the exact values

of the wave function. However, it is true that physicists who have access only

to position facts nonetheless postulate wave functions to make explanations and

predictions, and they often agree on the exact wave function of the system. So the

best system comparisons and the issue of supervenience may be more complicated

than what the debate has assumed.

At any rate, the weak nomological interpretation demands less of the wave

function of the universe. It does not have to be a simple function or determined

in a simple way. It can be highly complex, as long as it is the simplest among

all the choices. The weak nomological interpretation is less realist than the previ-

ous approaches, but it could still be realist if the extended Humean model can be

understood as a realist view about laws and properties.

5 The Sui Generis Interpretation

It is possible to be not persuaded by any of the above strategies. The high-

dimensional field interpretation and the Hilbert space interpretation require so-

phisticated stories about the emergence of the apparent three-dimensional objects

and ordinary space-time. The low-dimensional multi-field interpretation and the

subsystem property interpretation may seem to be trying too hard to squeeze the

wave function into familiar ontological categories.

Perhaps the lesson of quantum mechanics is that the wave function does not fit

into any familiar categories of things; it is a new kind of entity. Perhaps it is neither

ontological nor nomological. In that case, the wave function has its own category

of existence that is distinct from anything we have considered. In other words, the

wave function is ontologically sui generis. Maudlin (2013) suggests that we should

be open to that possibility.

6 Conclusion

In this article, we have surveyed three kinds of realist interpretations of the wave

function: ontological interpretations, nomological interpretations, and the sui generis

interpretation. (See Table 1 for a summary.) A century after the discovery of

quantum mechanics, although there is no consensus on what it means, we have

made significant progress in constructing several realist interpretations. Almost

every interpretation requires further developments, and it is too early to say which

one is the best or the most fruitful. It is also too early to think that those are

exhaustive of all the options available to the realist. In all likelihood, there will be

other ways to think about the wave function from the realist perspective that we
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Interpretation BM GRW0 GRWm GRWf S0 Sm HD LD
High-Dimensional Field ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

Low-Dimensional Multi-field ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Properties of Systems ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Vector in Hilbert Space ✗ ? ✗ ✗ ✓ ✗ ✓ ✗

Strongly Nomological ✓ ✗ ? ? ✗ ✓ ✓ ✗

Weakly Nomological ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓

Sui Generis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The first column lists all the realist interpretations reviewed in this article. In the first row,
we have the main solutions to the quantum measurement problem: BM (Bohmian mechanics with
a particle ontology), GRW0 (GRW theory without additional ontologies), GRWm (GRW theory with
a mass-density ontology), GRWf (GRW theory with a flash ontology), S0 (Everettian theory without
additional ontologies), and Sm (Everettian theory with a mass-density ontology). “HD” stands for
the view that the fundamental physical space is high-dimensional (1080 dimensions in configuration
space fundamentalism or possibly infinity in Hilbert space fundamentalism), and “LD” stands for
the view that the fundamental space is low-dimensional (3 dimensions of ordinary physical space).
We mark their compatibility with a check (compatible), a cross (incompatible), or a question mark
(unknown compatibility).

have never considered.24
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